Wiley, Immunology, 1(101), p. 147-153
DOI: 10.1046/j.1365-2567.2000.00081.x
Full text: Download
We describe the isolation and identification of three components required for the Rubino reaction (RR), which is the rapid sedimentation of formalinized sheep red-blood cells (SRBC) initiated by serum from leprosy patients with defective Mycobacterium leprae-specific cell immunity. The Rubino reaction factor (RRF) required for this phenomenon, previously identified as an immunoglobulin M (IgM), was purified from leprosy patient serum by adsorption to formalinized SRBC. Purified RRF IgM, when added to formalinized SRBC, did not produce a positive RR. However, when the contact was carried out in the presence of normal human serum (NHS), cells rapidly sedimented. The purified cofactor from NHS contained two components of 70 000 and 50 000 molecular weight (MW), as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The latter was recognized by the RRF IgM on immunoblot and its N-terminal sequence indicated that it was beta2-glycoprotein 1 (beta2-GP1), an anionic phospholipid-binding protein. Methanol-treated formalinized SRBC did not support the RR. Thin-layer chromatography of an extract of membranes indicated that the SRBC ligand was a cell-surface phospholipid. Cardiolipin inhibited the RR. These data demonstrate that the RR involves a trimolecular interaction in which IgM, beta2-GP1 and an SRBC phospholipid participate. By analogy with the antiphospholipid antibodies (anti-PL) that occur in autoimmune processes, serum samples from 29 systemic lupus erythematosus patients with high levels of anticardiolipin antibodies were submitted to the RR. A positive RR was obtained for 45% (13 of 29 patients). These results modify the paradigm of the absolute specificity of the RR for leprosy and demonstrate that RRF IgM is a beta2-GP1-dependent anti-PL.