Published in

Dove Press, International Journal of Nanomedicine, p. 153

DOI: 10.2147/ijn.s6585

Links

Tools

Export citation

Search in Google Scholar

Characterization of complexation of poly (N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) thermoresponsive cationic nanogels with salmon sperm DNA

Journal article published in 2009 by Tasnim Vira, Xiao Yu Wu, Jim Moselhy, Fei Liu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Thermoresponsive cationic nanogel (TCNG) networks based on N-isopropylacrylamide (NIPAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and quaternary alkyl ammonium halide salts of DMAEMA (DMAEMAQ) were synthesized by dispersion polymerization technique. The thermoresponsive properties of TCNGs and TCNG-salmon sperm DNA (sasDNA) polyplexes were characterized in aqueous media of various pH and ionic strength. P[NIPAM] and P[NIPAM/DMAEMA] TCNGs exhibited sharp volume phase transition (VPT) in water at critical temperatures (T(c)) of 32 degrees C and 36 degrees C, respectively. Quaternized P[NIPAM/DMAEMAQ] TCNGs did not undergo sharp VPT up to 50 degrees C. The VPT of uncomplexed TCNGs were sensitive to the ionic composition and ionic strength of salts in solution, but were insensitive to pH in the range 5.0 to 7.4. The VPT of P[NIPAM/DMAEMAQ]/sasDNA diminished in magnitude with increasing W(p)/W(d) suggesting greater compaction of the polyplexes. The distinct phase-transition properties of P[NIPAM/DMAEMA]/sasDNA and P[NIPAM/DMAEMAQ]/sasDNA polyplexes were attributed to the condensing capability of polycations and to differences in the spatial distribution of structural charges in quaternized and nonquaternized networks. The findings demonstrate that stable TCNGs can be prepared with controllable responsive properties determined by the nature of the cationic charge incorporated and may have potential as vehicles for DNA delivery.