Published in

Elsevier, International Journal of Pharmaceutics, 1-2(340), p. 20-28

DOI: 10.1016/j.ijpharm.2007.03.010

Links

Tools

Export citation

Search in Google Scholar

Avidin bioconjugate with a thermoresponsive polymer for biological and pharmaceutical applications

Journal article published in 2007 by S. Salmaso ORCID, S. Bersani, S. Pennadam, C. Alexander, P. Caliceti
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A thermoresponsive polymer, N-isopropylacrylamide-co-acrylamide (Mn 6 kDa) with a lower critical solution temperature (LCST) of 37 degrees C, was activated and conjugated to avidin to yield a derivative with 200 kDa molecular weight. Gel permeation analysis demonstrated that the new bioconjugate possessed an apparent size corresponding to a 220 kDa globular protein. Photon correlation spectroscopy and turbidometric studies showed that the bioconjugate underwent temperature dependent phase transitions. The protein-co-polymer bioconjugate displayed the same onset phase transition temperature (LCST) as the original synthetic co-polymer. Nevertheless, the aggregation profile of the bioconjugate shifted at higher temperature as compared to the original polymer. This indicated that the aggregation behaviour coil-to-globule transition of the co-polymer was modified by anchoring to the protein surface. Circular dichroism analysis showed that the co-polymer conjugation did not alter the protein tertiary structure tertiary the aromatic amino acid environment. The bioconjugate maintained 85+/-3% of native avidin affinity for biotin and biotin-Mab, and high affinity was maintained after three heating cycles. Pharmacokinetic studies demonstrated that the co-polymer bioconjugation increased the avidin residence time in the bloodstream. The distribution phase of avidin-co-polymer was longer than the native protein by a factor of 20. The co-polymer conjugation decreased by three-fold the distribution extent of avidin and reduced significantly its up-take to the liver.