Published in

Wiley, Immunology, 4(124), p. 480-488, 2008

DOI: 10.1111/j.1365-2567.2007.02799.x

Links

Tools

Export citation

Search in Google Scholar

Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. In this study, human brain astrocytes were found to constitutively express TLR3, and this expression was increased by interferon-gamma (IFN-gamma) or double-stranded RNA (dsRNA). Treatment employing dsRNA in astrocytes induced IFN regulatory factor 3 (IRF3) phosphorylation, dimer formation and nuclear translocation followed by STAT1 activation. This treatment also activated nuclear factor-kappaB, p38 and c-Jun N-terminal kinase significantly, while activating extracellular signal-regulated kinase to a lesser extent. Treatment with anti-TLR3 antibody inhibited dsRNA-mediated interleukin-6 (IL-6) production. In the presence of mitogen-activated protein kinase inhibitors, astrocytes failed to secrete IL-6 in response to dsRNA treatment. Therefore, dsRNA-induced IL-6 production is dependent on mitogen-activated protein kinases and type I IFN production is dependent on IRF3 in brain astrocytes. These results suggest that brain inflammation, which produces inflammatory cytokines and type I IFNs, may enhance TLR3 expression in astrocytes. Additionally, upregulated TLR3 might modulate inflammatory processes by producing proinflammatory cytokines.