Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Genomics, 6(91), p. 508-511, 2008

DOI: 10.1016/j.ygeno.2008.03.002

Links

Tools

Export citation

Search in Google Scholar

Functional Classification Analysis of Somatically Mutated Genes in Human Breast and Colorectal Cancers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A recent study published by Sjoblom and colleagues [T. Sjoblom, S. Jones, L.D. Wood, D.W. Parsons, J. Lin, T.D. Barber, D. Mandelker, R.J. Leary, J. Ptak, N. Silliman, S. Szabo, P. Buckhaults, C. Farrell, P. Meeh, S.D. Markowitz, J. Willis, D. Dawson, J.K. Willson, A.F. Gazdar, J. Hartigan, L. Wu, C. Liu, G. Parmigiani, B.H. Park, K.E. Bachman, N. Papadopoulos, B. Vogelstein, K.W. Kinzler, V.E. Velculescu, The consensus coding sequences of human breast and colorectal cancers. Science 314 (2006) 268-274.] performed comprehensive sequencing of 13,023 human genes and identified mutations in genes specific to breast and colorectal tumors, providing insight into organ-specific tumor biology. Here we present a systematic analysis of the functional classifications of Sjoblom's "CAN" genes, a subset of these validated mutant genes, that identifies novel organ-specific biological themes and molecular pathways associated with disease-specific etiology. This analysis links four somatically mutated genes associated with diverse oncological types to colorectal and breast cancers through established TGF-beta1-regulated interactions, revealing mechanistic differences in these cancers and providing potential diagnostic and therapeutic targets.