Published in

American Society for Microbiology, Journal of Bacteriology, 1(177), p. 222-228, 1995

DOI: 10.1128/jb.177.1.222-228.1995

Links

Tools

Export citation

Search in Google Scholar

Gin mutants that can be suppressed by a Fis-independent mutation.

Journal article published in 1995 by L. Spaeny-Dekking, E. Schlicher, K. Franken ORCID, P. van de Putte, N. Goosen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The Gin invertase of bacteriophage Mu mediates recombination between two inverted gix sites. Recombination requires the presence of a second protein, Fis, which binds to an enhancer sequence. We have isolated 24 different mutants of Gin that are impaired in DNA inversion but proficient in DNA binding. Six of these mutants could be suppressed for inversion by introduction of a second mutation, which when present in the wild-type gin gene causes a Fis-independent phenotype. Only one of the six resulting double mutants shows an inversion efficiency which is comparable to that of the wild-type Gin and which is independent of Fis. The corresponding mutation, M to I at position 108 (M108I), is located in a putative alpha-helical structure, which in the homologous gamma delta resolvase has been implicated in dimerization. The properties of the M108I mutant suggest that in Gin this dimerization helix might also be the target for Fis interaction. The five other mutants that show a restored inversion after introduction of a Fis-independent mutation appear to be completely dependent on Fis for this inversion. The corresponding mutations are located in different domains of the protein. The properties of these mutants in connection with the role of Fis in inversion will be discussed.