Published in

American Chemical Society, Analytical Chemistry, 3(78), p. 762-769, 2005

DOI: 10.1021/ac0513562

Links

Tools

Export citation

Search in Google Scholar

Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis

Journal article published in 2005 by Ehsan Majid, Sabahudin Hrapovic, Yali Liu, Keith B. Male, John H. T. Luong ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A flow analysis electrochemical system has been developed, characterized, and optimized for the determination of arsenite (As(III)). Sensitivity was significantly improved by the electrochemical deposition of gold nanoparticles on a dual glassy carbon electrode, which was inserted into a cross-flow thin-layer electrochemical cell. The electrochemical system was linear up to 15 ppb with a detection limit of 0.25 ppb. Gold deposition was evident from cyclic voltammetry measurements, whereas atomic force microscopy and scanning electron microscopy revealed the size and distribution of deposited gold nanoparticles. The size and density of the nanoparticles were related to the gold salt concentration, deposition time, and potential as well as the electrode position. The response to arsenite was directly related to the frequency, increment, and amplitude of the square wave voltammetry as well as the deposition time and potential. Estimated reproducibility was �1.1% at 95% confidence interval for 40 repeated analyses of 8 ppb arsenite during continuous analysis. The reproducibility was far superior if the electrochemical reduction of arsenite was performed in nitric acid instead of hydrochloric or sulfuric acid. The electrochemical system was applicable for analysis of spiked arsenic in mineral water containing a significant amount of various ion elements. ; peer reviewed: yes