Published in

Springer Verlag, Journal of Sol-Gel Science and Technology, 1-3(32), p. 107-110

DOI: 10.1007/s10971-004-5773-9

Links

Tools

Export citation

Search in Google Scholar

Ordered mesostructured silica films: effect of pore surface on its sensing properties

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An electrochemical resistive-type sensor device, with a mesoporous silica thin film as sensitive membrane, has been developed and characterised. The silica film has been obtained via evaporation-induced self-assembly (EISA) using a tri-block copolymer (Pluronic F-127) as templating agent. It has been deposited by dip-coating on a silicon substrate with metallic interdigitated electrodes. Fast, reversible and reproducible electrical responses to relative humidity changes have been observed for the sensor device. The conduction mechanism has been related to chemical properties, structural order and surface morphology of the porosity in the silica film, confirming the dependence on the film preparation method and overall the importance of calcination temperature.