Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Power Electronics, 7(29), p. 3279-3289, 2014

DOI: 10.1109/tpel.2013.2279191

Links

Tools

Export citation

Search in Google Scholar

A Robust Passive Damping Method for LLCL-Filter-Based Grid-Tied Inverters to Minimize the Effect of Grid Harmonic Voltages

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In order to minimize the effect of the grid harmonic voltages, harmonic compensation is usually adopted for a gridtied inverter. However, a large variation of the grid inductance challenges the system stability in case a high-order passive filter is used to connect an inverter to the grid. Although in theory, an adaptive controller can solve this problem, but in such case the grid inductance may need to be detected on-line, which will complicate the control system. This paper investigates the relationship between the maximum gain of the controller that still keeps the system stable and the Q-factor for a grid-tied inverter with an RL series or an RC parallel damped high-order power filter. Then, a robust passive damping method for LLCL-filter based grid-tied inverters is proposed, which effectively can suppress the possible resonances even if the grid inductance varies in a wide range. Simulation and experimental results are in good agreement with the theoretical analysis.