Published in

Geological Society of America, Geology, 7(38), p. 607-610

DOI: 10.1130/g30777.1

Links

Tools

Export citation

Search in Google Scholar

High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Eocene Thermal Maximum 2 (ETM2) and H2 were two short-lived global warming events that occurred ~2 m.y. after the Paleocene–Eocene thermal maximum (PETM, ca. 56 Ma). We have generated benthic foraminiferal stable carbon and oxygen isotope records of four sites along a depth transect on Walvis Ridge (~3.5–1.5 km paleodepth, southeast Atlantic Ocean) and one site on Maud Rise (Weddell Sea) to constrain the pattern and magnitude of their carbon isotope excursions (CIEs) and deep-sea warming. At all sites, ETM2 is characterized by ~3 °C warming and a –1.4‰ CIE. The H2 event that occurred ~100 k.y. later is associated with ~2 °C warming and a –0.8‰ CIE. The magnitudes of the δ13C and δ18O excursions of both events are significantly smaller than those during the PETM, but their coherent relation indicates that the δ13C change of the exogenic carbon pool was similarly related to warming during these events, despite the much more gradual and transitioned onset of ETM2 and H2.