Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1(1076), p. 37-48
DOI: 10.1016/0167-4838(91)90217-n
Full text: Unavailable
The products arising from one-electron electrochemical reduction of the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+) have been studied by HPLC chromatography and 1H-NMR spectroscopy. HPLC and NMR analyses have shown seven dimeric species, the most abundant of which (40%) has been isolated and has resulted to be an NADP 4,4-linked dimer. The other two diastereoisomeric 4,4-dimers present for the 25% and 10%, respectively, have been detected in the crude reaction mixture, but have not been isolated. The 4,4-tetrahydrobipyridine structure and the stereochemistry at the ring-ring junction for these three isomers have been determined on the basis of their NMR parameters. Preparative HPLC chromatography also led to two fractions enriched in another four dimers, present in the crude mixture, which turned out to have a 4,6-tetrahydrobipyridine structure. All the chemical shifts and the H,H coupling constants of the 4,4- and 4,6-tetrahydrobipyridine systems have been obtained for the seven compounds. For the most abundant among the 4,4-dimers the NMR analysis also gave the coupling constant values of the ribose-diphosphate chain