Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Smart Grid, 3(5), p. 1149-1158, 2014

DOI: 10.1109/tsg.2013.2291912

Links

Tools

Export citation

Search in Google Scholar

Reactive Power Sharing and Voltage Harmonic Distortion Compensation of Droop Controlled Single Phase Islanded Microgrids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

When paralleling multiple inverters that are capable of operating as an island, the inverters typically employ the droop control scheme. Traditional droop control enables the decentralized regulation of the local voltage and frequency of the microgrid by the inverters. The droop method also enables the inverters to share the real and reactive power required by the loads. This paper focuses on some of the limitations of parallel islanded single phase inverters using droop control. Algorithms with the aim to address the following limitations in islanded operation were proposed: reactive power sharing and reduction of the voltage harmonic distortion at the point of common coupling (PCC). Experimental results were then presented to show the suitability of the proposed algorithms in achieving reactive power sharing and in improving the voltage harmonic distortion at the PCC.