Published in

Nature Research, Scientific Reports, 1(3), 2013

DOI: 10.1038/srep02665

Links

Tools

Export citation

Search in Google Scholar

Sb2Se3 under pressure

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Selected members of the A2B3 (A = Sb, Bi; B = Se, Te) family are topological insulators. The Sb2Se3 compound does not exhibit any topological properties at ambient conditions; a recent high-pressure study, however, indicated that pressure transforms Sb2Se3 from a band insulator into a topological insulator above ~2 GPa; in addition, three structural transitions were proposed to occur up to 25 GPa. Partly motivated by these results, we have performed x-ray diffraction and Raman spectroscopy investigations on Sb2Se3 under pressure up to 65 GPa. We have identified only one reversible structural transition: the initial Pnma structure transforms into a disordered cubic bcc alloy above 51 GPa. On the other hand, our high-pressure Raman study did not reproduce the previous results; we attribute the discrepancies to the effects of the different pressure transmitting media used in the high-pressure experiments. We discuss the structural behavior of Sb2Se3 within the A2B3 (A = Sb, Bi; B = Se, Te) series.