Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Materials, 5(13), p. 508-514, 2014

DOI: 10.1038/nmat3915

Links

Tools

Export citation

Search in Google Scholar

Strong, tough and stiff bioinspired ceramics from brittle constituents

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High strength and high toughness are usually mutually exclusive in engineering materials. Improving the toughness of strong but brittle materials like ceramics thus relies on the introduction of a metallic or polymeric ductile phase to dissipate energy, which conversely decreases the strength, stiffness, and the ability to operate at high temperature. In many natural materials, toughness is achieved through a combination of multiple mechanisms operating at different length scales but such structures have been extremely difficult to replicate. Building upon such biological structures, we demonstrate a simple approach that yields bulk ceramics characterized by a unique combination of high strength (470 MPa), high toughness (22 MPa.m1/2), and high stiffness (290 GPa) without the assistance of a ductile phase. Because only mineral constituents were used, this material retains its mechanical properties at high temperature (600{\deg}C). The bioinspired, material-independent design presented here is a specific but relevant example of a strong, tough, and stiff material, in great need for structural, transportations, and energy-related applications. ; Comment: 27 pages, 4 figures, supplementary data, 47 references