Dissemin is shutting down on January 1st, 2025

Published in

Soil Science Society of America, Soil Science Society of America Journal, 5(78), p. 1641

DOI: 10.2136/sssaj2014.05.0198

Links

Tools

Export citation

Search in Google Scholar

Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn

Journal article published in 2014 by Rodrick D. Lentz ORCID, James A. Ippolito ORCID, Kurt A. Spokas
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Few multiyear field studies have examined the impacts of a one-time biochar application on net N mineralization and greenhouse gas emissions in an irrigated, calcareous soil; yet such applications are hypothesized as a means of sequestering atmospheric CO2 and improving soil quality. We fall-applied four treatments, stockpiled dairy manure (42 Mg/ha dry wt.); hardwood-derived biochar (22.4 Mg/ha); combined biochar and manure; and no amendments (control). Nitrogen fertilizer was applied in all plots and years based on treatment’s pre-season soil test N and crop requirements, and accounting for estimated N mineralized from added manure. From 2009 to 2011 we measured greenhouse gas fluxes using vented chambers, net N mineralization (NNM) using buried bags, corn yield, and N uptake, and in a succeeding year, root and shoot biomass and biomass C and N concentrations. Both amendments produced soil produced persistent soil effects. Manure increased seasonal and three year cumulative NNM, root biomass, and root:shoot ratio 1.6-fold, CO2-C gas flux 1.2-fold, and reduced soil NH4:NO3 ratio 58% relative to no-manure treatments. Relative to all other treatments on average, biochar-only produced 33% less cumulative NNM, 20% less CO2-C and 50% less N2O-N gas emissions, 35% less root biomass, and increased soil NH4:NO3 ratio 1.8-fold. These long-term effects suggest that biochar slightly impaired nitrification and N immobilization processes, and are likely caused by enduring biochar porosity and surface chemistry characteristics that influence N-transform-ation processes, alter microbial populations, and sequester soil ammonium. While the biochar-only treatment demonstrated a potential to increase corn yields and minimize CO2-C and N2O-N gas emissions in these calcareous soils; biochar also caused decreased corn yields under certain soil nutrient conditions. Combining biochar with manure effectively utilizes these soil amendments as it eliminated potential yield reductions and maximized manure net N mineralization potential.