Published in

Oxford University Press, Nucleic Acids Research, 3(40), p. 1106-1117, 2011

DOI: 10.1093/nar/gkr837

Links

Tools

Export citation

Search in Google Scholar

Phosphorylation of SRSF1 is modulated by replicational stress

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

DNA ligase I-deficient 46BR.1G1 cells show a delay in the maturation of replicative intermediates resulting in the accumulation of single- and double-stranded DNA breaks. As a consequence the ataxia telangiectasia mutated protein kinase (ATM) is constitutively phosphorylated at a basal level. Here, we use 46BR.1G1 cells as a model system to study the cell response to chronic replication-dependent DNA damage. Starting from a proteomic approach, we demonstrate that the phosphorylation level of factors controlling constitutive and alternative splicing is affected by the damage elicited by DNA ligase I deficiency. In particular, we show that SRSF1 is hyperphosphorylated in 46BR.1G1 cells compared to control fibroblasts. This hyperphosphorylation can be partially prevented by inhibiting ATM activity with caffeine. Notably, hyperphosphorylation of SRSF1 affects the subnuclear distribution of the protein and the alternative splicing pattern of target genes. We also unveil a modulation of SRSF1 phosphorylation after exposure of MRC-5V1 control fibroblasts to different exogenous sources of DNA damage. Altogether, our observations indicate that a relevant aspect of the cell response to DNA damage involves the post-translational regulation of splicing factor SRSF1 which is associated with a shift in the alternative splicing program of target genes to control cell survival or cell death.