Published in

Oxford University Press (OUP), Geophysical Journal International, 1(203), p. 334-350

DOI: 10.1093/gji/ggv304

Links

Tools

Export citation

Search in Google Scholar

Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Progressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystallographic preferred orientation or CPO) whose observable signatures include shear-wave splitting and azimuthal dependence of surface wave speeds. Comparison of these signatures with mantle flow models thus allows mantle dynamics to be unraveled on global and regional scales. However, existing self-consistent models of CPO evolution are computationally expensive when used in 3-D and/or time-dependent convection models. Here we propose a new method, called ANPAR, which is based on an analytical parameterisation of the crystallographic spin predicted by the second-order (SO) self-consistent theory. Our parameterisation runs approximately 2-3 x 10^4 times faster than the SO model and fits its predictions for CPO and crystallographic spin with a variance reduction > 99%. We illustrate the ANPAR model predictions for three uniform deformations (uniaxial compression, pure shear, simple shear) and for a corner-flow model of a spreading ridge. ; Comment: Submitted to GJI December 2014