Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1675), p. 27-32, 2014

DOI: 10.1557/opl.2014.830

Links

Tools

Export citation

Search in Google Scholar

Electrodeposited Cu2O|ZnO Heterostructures With High Built-In Voltages For Photovoltaic Applications

Journal article published in 2014 by Shane Heffernan, Andrew J. Flewitt ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTMethods of improving low-cost Cu2O|ZnO heterojunction diodes fabricated through galvanostatic deposition of Cu2O are presented. Improved processing parameters responsible for maximizing built-in voltage (Vbi) are determined. The relationship between pH, deposition current, temperature, and diode quality is analyzed and a process window for optimal Cu2O deposition on ZnO is obtained with a pH range between 12.0 and 12.1 and a current density range which is determined by the effect of both pH and deposition current (Jdep) on grain size. The pH window is found to be narrower than previously reported1 and much narrower than the processing window for the deposition of Cu2O films. A two-step approach deposition based on the use of different Jdep is presented for the first time. A Vbi of 0.6 V is achieved, which is the highest reported for cells produced using low temperature processing routes involving electrodeposition and reactive sputtering.