Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1633), p. 43-49, 2014

DOI: 10.1557/opl.2014.270

Links

Tools

Export citation

Search in Google Scholar

Electronic Transport Characterization of BiVO4 Using AC Field Hall Technique

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTBismuth vanadate (BiVO4) is a photoelectrode for the oxidation of water. It is of fundamental importance to understand the electrical and photoelectrochemical properties of this material. In metal oxides, the electronic transport is described by the small polaron model, first described by Mott. In this model, the resistivity varies with temperature as $ρ \,\left( T \right)\, ∝ \,Te^{({{E_a } \mathord{\left/ {\vphantom {{E_a } {(k_B T))}}} \right. \kern-\nulldelimiterspace} {(k_B T))}}} $, where Ea is the hopping activation energy, kB is the Boltzmann constant and T is the absolute temperature. Resistivity measurements confirm that small polaron hopping dominates in temperature ranges from 250 K to 300 K. In addition measurements from 175K to 250K show the variable range hopping dominates the transport. To this end, the electronic transport properties of BiVO4 single crystal were characterized using resistivity measurements and Hall effect measurements over temperatures ranging from 175 K to 300 K.