Published in

Oxford University Press (OUP), Protein Engineering, Design & Selection, 1-2(24), p. 179-184

DOI: 10.1093/protein/gzq064

Links

Tools

Export citation

Search in Google Scholar

Mutational analysis of kinetic partitioning in protein folding and protein–DNA binding

Journal article published in 2010 by Ignacio E. Sánchez, Diego U. Ferreiro ORCID, Gonzalo de Prat Gay
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Kinetic partitioning between competing routes is present in many biological processes. Here, we propose a methodology to characterize kinetic partitioning through site-directed mutagenesis and apply it to parallel routes for unfolding of the TI I27 protein and for recognition of its target DNA by the human papillomavirus E2 protein. The balance between the two competing reaction routes can be quantified by the partitioning constant K(p). K(p) is easily modulated by point mutations, opening the way for the rational design of kinetic partitioning. Conserved wild-type residues strongly favor one of the two competing reactions, suggesting that in these systems there is an evolutionary pressure to shift partitioning towards a certain route. The mutations with the largest effects on partitioning cluster together in space, defining the protein regions most relevant for the modulation of partitioning. Such regions are neither fully coincident with nor strictly segregated from the regions that are important from each competing reaction. We dissected the mutational effects on partitioning into the contributions from each competing route using a new parameter called pi-value. The results suggest how the design of kinetic partitioning may be approached in each case.