Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 26(104), p. 10830-10834, 2007

DOI: 10.1073/pnas.0703969104

Links

Tools

Export citation

Search in Google Scholar

The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mitochondrial carriers are believed widely to be dimers both in structure and function. However, the structural fold is a barrel of six transmembrane alpha-helices without an obvious dimerisation interface. Here, we show by negative dominance studies that the yeast mitochondrial ADP/ATP carrier 2 from Saccharomyces cerevisiae (AAC2) is functional as a monomer in the mitochondrial membrane. Adenine nucleotide transport by wild-type AAC2 is inhibited by the sulfhydryl reagent 2-sulfonatoethyl-methanethiosulfonate (MTSES), whereas the activity of a mutant AAC2, devoid of cysteines, is unaffected. Wild-type and cysteine-less AAC2 were coexpressed in different molar ratios in yeast mitochondrial membranes. After addition of MTSES the residual transport activity correlated linearly with the fraction of cysteine-less carrier present in the membranes, and so the two versions functioned independently of each other. Also, the cysteine-less and wild-type carriers were purified separately, mixed in defined ratios and reconstituted into liposomes. Again, the residual transport activity in the presence of MTSES depended linearly on the amount of cysteine-less carrier. Thus, the entire transport cycle for ADP/ATP exchange is carried out by the monomer.