Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Biological Chemistry, 1(395), p. 1-13, 2013

DOI: 10.1515/hsz-2013-0174

Links

Tools

Export citation

Search in Google Scholar

Stressed to death – mechanisms of ER stress-induced cell death

Journal article published in 2013 by Natalia Sovolyova, Sandra Healy, Afshin Samali ORCID, Susan E. Logue ORCID
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The endoplasmic reticulum (ER) is a highly dynamic organelle of fundamental importance present in all eukaryotic cells. The majority of synthesized structural and secreted proteins undergo post-translational modification, folding and oligomerization in the ER lumen, enabling proteins to carry out their physiological functions. Therefore, maintenance of ER homeostasis and function is imperative for proper cellular function. Physiological and pathological conditions can disturb ER homeostasis and thus negatively impact upon protein folding, resulting in an accumulation of unfolded proteins. Examples include hypoxia, hypo- and hyperglycemia, acidosis, and fluxes in calcium levels. Increased levels of unfolded/misfolded proteins within the ER lumen triggers a condition commonly referred to as ‘ER stress’. To combat ER stress, cells have evolved a highly conserved adaptive stress response referred to as the unfolded protein response (UPR). UPR signaling affords the cell a ‘window of opportunity’ for stress resolution however, if prolonged or excessive the UPR is insufficient and ER stress-induced cell death ensues. This review discusses the role of ER stress sensors IRE1, PERK and ATF6, describing their role in ER stress-induced death signaling with specific emphasis placed upon the importance of the intrinsic cell death pathway and Bcl-2 family regulation.