Published in

Wiley, Immunology, 3(92), p. 396-401, 1997

DOI: 10.1046/j.1365-2567.1997.00365.x

Links

Tools

Export citation

Search in Google Scholar

A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphyloccocus aureus in human monocytes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Monocytes (MO) and macrophages (MAC) are important producers of cytokines involved in the pathophysiology of bacterial sepsis. Most studies concentrate on the effects of bacterial lipopolysaccharides (LPS) regarding the induction of cytokine gene expression and secretion in MO/MAC. Here we report that besides LPS, the synthetic lipoprotein analogue lipopeptide N-palmitoyl-S-(2,3-bis(palmitoyl)-(2RS)-propyl)-(R)-cysteinyl-alanyl- glycine (Pam3-Cys-Ala-Gly), another component of the outer membrane of Gram-negative bacteria, as well as heat-killed Staphyloccocus aureus (S. aureus/SAC) are potent stimuli for cytokines in human MO. For all three investigated stimuli we found an individual pattern of cytokine induction: LPS was most potent in inducing interleukin-6 (IL-6) synthesis, whereas for tumour necrosis factor-alpha (TNF-alpha) secretion SAC was the best stimulus. Comparable amounts of IL-8 were induced by either LPS or Pam3-Cys-Ala-Gly, with SAC being less effective even at higher concentrations. The addition of serum led to an increase in LPS-, SAC- and Pam3-Cys-Ala-Gly-stimulated TNF-alpha secretion, indicating that the presence of serum is critical not just for LPS stimulation. Furthermore, as is known for LPS, Pam3-Cys-Ala-Gly and SAC rendered MO refractory to a second bacterial stimulus. Pam3-Cys-Ala-Gly and SAC induced tolerance for itself, but LPS could partially overcome this effect. As the CD14 molecule is discussed as a common receptor for different bacterial components, we investigated whether the TNF-alpha response of MO could be blocked by anti-CD14 antibodies. MY4, a CD14 antibody, selectively blocked the TNF-alpha secretion induced by LPS but not by Pam3-Cys-Ala-Gly or SAC. In summary, we conclude that besides LPS, lipopeptide Pam3-Cys-Ala-Gly and SAC are potent stimuli for human MO, while the mechanisms of activation seem to be partially different from LPS.