Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Proteomics, 2(8), p. 254-263, 2008

DOI: 10.1002/pmic.200700720

Links

Tools

Export citation

Search in Google Scholar

Glycoproteomic characterization of butyrylcholinesterase from human plasma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human butyrylcholinesterase (hBChE) is a highly glycosylated protein present in human plasma. The enzyme hydrolyses choline esters, for example benzoylcholine, butyrylthiocholine and acetylthiocholine as well as noncholine esters like heroin and aspirin. hBChE is primarily involved in neuronal transmission and is a potential bioscavenger of toxic organophosphates to protect acetylcholinesterase. A prerequisite for the therapeutic use of hBChE is a detailed characterization of this glycoprotein purified from human plasma. In this study, MS/MS could confirm most of the protein backbone, including the N- and the C-terminus. Site-specific analysis of all nine potential N-glycosylation sites revealed mainly mono- and disialylated N-glycans to be present on this glycoprotein. Sialic acids (Neu5Ac) are mainly α2,6-linked, however a fraction of the N-glycans contained Neu5Ac also in α2,3 linkage. On monosialylated N-glycans, sialic acid is exclusively located on the 3-arm and in α2,6 linkage, as verified by 2D-HPLC and exoglycosidase digests of 2-aminopyridine (PA)-labelled N-glycans. This first comprehensive glycoproteomic analysis of the important human plasma glycoprotein BChE did not give any indication of O-glycosylation or any other kind of PTMs as previously postulated. ; 10 page(s)