Published in

Optica, Optics Express, 25(21), p. 30842, 2013

DOI: 10.1364/oe.21.030842

Links

Tools

Export citation

Search in Google Scholar

In vivo femtosecond endosurgery: an intestinal epithelial regeneration-after-injury model

Journal article published in 2013 by Myunghwan Choi ORCID, Seok Hyun Yun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Regeneration of the intestinal epithelium after injury or during pathogenesis is a dynamic cellular process critical for host immunity. However, current epithelial injury models provide poor spatial control, complicating the study of precise cellular responses. Here we developed endoscopic femtosecond-laser surgery capable of generating acute tissue injury. A side-view probe provides a convenient access to the distal colon in the mouse in vivo and allows real-time intraoperative monitoring as well as pre- and post-surgery examinations via multiphoton imaging. The photo-induced damage showed a nonlinear dependence on laser intensity. At an optical power of 200 mW (2.5 nJ per pulse), scanning the beam focus over 300x300 µm2 area in the colonic mucosa generated substantial vascular damages within 30 s. We confirmed the localized tissue damage and the physiologic regeneration of the disrupted epithelium by in situ barrier function assays, validating the animal model for epithelial regeneration following injury. The femtosecond endosurgery technique is applicable to various experimental models based on laser-induced perturbations.