Published in

American Physical Society, Physical review B, 24(91), 2015

DOI: 10.1103/physrevb.91.245423

Links

Tools

Export citation

Search in Google Scholar

Reconstructing phonon mean free path contributions to thermal conductivity using nanoscale membranes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Under the terms of the Creative Commons Attribution License 3.0 (CC-BY). ; Knowledge of the mean-free-path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon mean free paths. A noncontact transient thermal grating technique was used to measure the thermal conductivity of suspended Si membranes ranging from 15–1500 nm in thickness. A decrease in the thermal conductivity from 74–13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean-free-path suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal conductivity accumulation vs. phonon mean free path, and compare with theoretical models. ; We acknowledge support from “Solid State Solar-Thermal Energy Conversion Centre (S3TEC),” an Energy Frontier Research Centre funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. DE-SC0001299/DE-FG02-09ER46577, the Academy of Finland under Grant No. 252598, and the EU FP7 ENERGY FET project MERGING Grant Agreement No. 309150 and the Spanish Plan Nacional project TAPHOR (MAT-2012-31392). ; Peer Reviewed