Published in

Elsevier, Developmental Cell, 5(23), p. 925-938, 2012

DOI: 10.1016/j.devcel.2012.09.019

Links

Tools

Export citation

Search in Google Scholar

Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Coordinated migration and placement of interneurons and projection neurons lead to functional connectivity in the cerebral cortex; defective neuronal migration and the resultant connectivity changes underlie the cognitive defects in a spectrum of neurological disorders. Here we show that primary cilia play a guiding role in the migration and placement of postmitotic interneurons in the developing cerebral cortex and that this process requires the ciliary protein, Arl13b. Through live imaging of interneuronal cilia, we show that migrating interneurons display highly dynamic primary cilia and we correlate cilia dynamics with the interneuron's migratory state. We demonstrate that the guidance cue receptors essential for interneuronal migration localize to interneuronal primary cilia, but their concentration and dynamics are altered in the absence of Arl13b. Expression of Arl13b variants known to cause Joubert syndrome induce defective interneuronal migration, suggesting that defects in cilia-dependent interneuron migration may in part underlie the neurological defects in Joubert syndrome patients. VIDEO ABSTRACT: