Dissemin is shutting down on January 1st, 2025

Published in

American Society for Microbiology, Antimicrobial Agents and Chemotherapy, 10(57), p. 4911-4919, 2013

DOI: 10.1128/aac.00418-13

Links

Tools

Export citation

Search in Google Scholar

Genomic Characterization of Ciprofloxacin Resistance in a Laboratory-Derived Mutant and a Clinical Isolate of Streptococcus pneumoniae

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The broad-spectrum fluoroquinolone ciprofloxacin is a bactericidal antibiotic targeting DNA topoisomerase IV and DNA gyrase encoded by the parC and gyrA genes. Resistance to ciprofloxacin in Streptococcus pneumoniae mainly occurs through the acquisition of mutations in the quinolone resistance-determining region (QRDR) of the ParC and GyrA targets. A role in low-level ciprofloxacin resistance has also been attributed to efflux systems. To look into ciprofloxacin resistance at a genome-wide scale and to discover additional mutations implicated in resistance, we performed whole-genome sequencing of an S. pneumoniae isolate selected for resistance to ciprofloxacin in vitro (128 μg/ml) and of a clinical isolate displaying low-level ciprofloxacin resistance (2 μg/ml). Gene disruption and DNA transformation experiments with PCR fragments harboring the mutations identified in the in vitro S. pneumoniae mutant revealed that resistance is mainly due to QRDR mutations in parC and gyrA and to the overexpression of the ABC transporters PatA and PatB. In contrast, no QRDR mutations were identified in the genome of the S. pneumoniae clinical isolate with low-level resistance to ciprofloxacin. Assays performed in the presence of the efflux pump inhibitor reserpine suggested that resistance is likely mediated by efflux. Interestingly, the genome sequence of this clinical isolate also revealed mutations in the coding region of patA and patB that we implicated in resistance. Finally, a mutation in the NAD(P)H-dependent glycerol-3-phosphate dehydrogenase identified in the S. pneumoniae clinical strain was shown to protect against ciprofloxacin-mediated reactive oxygen species.