Published in

American Society for Microbiology, Antimicrobial Agents and Chemotherapy, 10(57), p. 4656-4663, 2013

DOI: 10.1128/aac.00597-13

Links

Tools

Export citation

Search in Google Scholar

Amphotericin B- and Voriconazole-Echinocandin Combinations against Aspergillus spp.: Effect of Serum on Inhibitory and Fungicidal Interactions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Antifungal combination therapy with voriconazole or amphotericin B and an echinocandin is often employed as primary or salvage therapy for management particularly of refractory aspergillosis. The pharmacodynamic interactions of amphotericin B- and voriconazole-based combinations with the three echinocandins caspofungin, micafungin, and anidulafungin in the presence of serum were tested against 15 Aspergillus fumigatus complex, A. flavus complex, and A. terreus complex isolates to assess both their growth-inhibitory and fungicidal activities. The in vitro activity of each drug alone and in combination at a 1:1 fixed concentration ratio was tested with a broth microdilution colorimetric method, and interactions were assessed by isobolographic analysis. Synergy was found for all amphotericin B- and voriconazole-based combinations, with amphotericin B-based combinations showing strong inhibitory synergistic interactions (interaction indices of 0.20 to 0.52) and with voriconazole-based combinations demonstrating strong fungicidal synergistic interactions (interaction indices of 0.10 to 0.29) ( P < 0.001). Drug- and species-specific differences were found, with caspofungin and the A. fumigatus complex exhibiting the weakest synergistic interactions. In the presence of serum, the synergistic interactions were reduced in the order (from largest to smallest decrease) micafungin > anidulafungin > caspofungin, and A. flavus complex > A. fumigatus complex > A. terreus complex, resulting in additive interactions, particularly for inhibitory activities of amphotericin B-echinocandin combinations and fungicidal activities of voriconazole-echinocandin combinations. Drug- and species-specific differences were found in the presence of serum for inhibitory activities of antifungal drugs, with the lowest interaction indices being observed for amphotericin B-caspofungin (median, 0.77) and for the A. terreus complex (median, 0.56). The present in vitro data showed that serum had a major impact on synergistic interactions of amphotericin B-echinocandin and voriconazole-echinocandin combinations, resulting in additive interactions and explaining the indifferent outcomes usually observed in vivo .