Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 33(25), p. 5353-5359, 2015

DOI: 10.1002/adfm.201501858

Links

Tools

Export citation

Search in Google Scholar

Genesis of “Solitary Cations” Induced by Atomic Hydrogen

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Substitution of constituent atoms and/or changes of crystal structure are routinely used to tailor the fundamental properties of a semiconductor. Here, it is shown that such a tailoring can also be realized thanks to a novel hydrogen effect. Four hydrogen atoms can screen the effect the crystal potential has on a constituent cation, thus generating a solitary cation: an effectively isolated impurity, so chemically different from the unscreened constituent cations that it strongly perturbs the electronic properties of the material by increasing its fundamental band-gap energy. Such a hydrogen-induced screening effect is removed by thermal treatments, thus permitting reversible modifications of both the crystal chemistry and material's properties. This phenomenon, observed in InN and other topical nitrides, should permit the development of a new class of materials as well as the fabrication of photonic devices and optical integrated circuits with distinct, tailor-made regions emitting or absorbing light, all integrated onto a monolithic semiconductor structure.