Published in

Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 7(94), p. 2634-2643, 2009

DOI: 10.1210/jc.2008-2564

Links

Tools

Export citation

Search in Google Scholar

Identification and Characterization of Two Novel Truncated but Functional Isoforms of the Somatostatin Receptor Subtype 5 Differentially Present in Pituitary Tumors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Context: Somatostatin and its related peptide cortistatin exert multiple actions on normal and tumoral tissue targets through a family of receptors termed somatostatin receptor (sst)1-5. Despite the considerable advances in the knowledge on these receptors and their (patho)physiological roles, there is still evidence that additional receptors for these peptides should exist to fully explain their actions.Objective: The growing number of spliced variants found in similar receptor families, often present in tumors, and results from our group obtained on sst5 from other species (pig) led us to explore the existence of new human sst5 isoforms.Design and Results: A rapid amplification of cDNA ends PCR approach on samples from a human pituitary tumor and a cell line enabled identification of two novel alternatively spliced sst5 receptor variants. The sequences obtained encode putative proteins that correspond to truncated isoforms of five and four transmembrane domains (TMDs), accordingly named sst5TMD5 and sst5TMD4, respectively. Both novel receptors show a differential expression pattern in normal tissues and are also present in pituitary tumors of diverse etiology including nonfunctioning adenomas, corticotropinomas, somatotropinomas, and a prolactinoma. In contrast to the predominant plasma membrane localization of full-length sst5, both sst5TMD5 and sst5TMD4 show a preferentially intracellular localization. Despite their truncated nature, both receptors are functional, as shown by their ability to mediate selective, ligand-induced rises in free cytosolic calcium concentration. Specifically, whereas sst5TMD5 is selectivity activated by somatostatin compared with cortistatin, cells transfected with sst5TMD4 almost exclusively respond to cortistatin and not to somatostatin.Conclusions: Our results demonstrate the existence of two previously unidentified sst5 spliced variants with distinct distribution in normal tissues and pituitary tumors, unique ligand-selective signaling properties, and subcellular distribution, which could contribute to somatostatin and cortistatin signaling in normal and tumoral cells.