Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 15(29), p. 1971-1979, 2011

DOI: 10.1200/jco.2010.31.8576

Links

Tools

Export citation

Search in Google Scholar

TP53 Mutations in Low-Risk Myelodysplastic Syndromes With del(5q) Predict Disease Progression

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purpose To determine the frequency of TP53 mutations and the level of p53 protein expression by immunohistochemistry (IHC) in low-risk myelodysplastic syndromes (MDS) with del(5q) and to assess their impact on disease progression. Patients and Methods Pre- and postprogression bone marrow (BM) samples from 55 consecutive patients with International Prognostic Scoring System low risk (n = 32) or intermediate-1 risk (n = 23) were studied by next-generation sequencing of TP53. IHC for p53 was performed on 148 sequential BM samples. Results TP53 mutations with a median clone size of 11% (range, 1% to 54%) were detected in 10 patients (18%) already at an early phase of the disease. Mutations were equally common in low-risk and intermediate-1–risk patients and were associated with evolution to acute myeloid leukemia (5 of 10 v 7 of 45; P = .045). Nine of 10 patients carrying mutations showed more than 2% BM progenitors with strong p53 staining. The probability of a complete cytogenetic response to lenalidomide was lower in mutated patients (0 of 7 v 12 of 24; P = .024). Conclusion By using sensitive deep-sequencing technology, we demonstrated that TP53 mutated populations may occur at an early disease stage in almost a fifth of low-risk MDS patients with del(5q). Importantly, mutations were present years before disease progression and were associated with an increased risk of leukemic evolution. TP53 mutations could not be predicted by common clinical features but were associated with p53 overexpression. Our findings indicate a previously unrecognized heterogeneity of the disease which may significantly affect clinical decision making.