Published in

Optica, Optics Letters, 8(39), p. 2302, 2014

DOI: 10.1364/ol.39.002302

Links

Tools

Export citation

Search in Google Scholar

In situ measurement of nonlinear carrier-envelope phase changes in hollow fiber compression

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We demonstrate a simple and robust single-shot interferometric technique that allows the in situ measurement of intensity-dependent phase changes experienced by ultrashort laser pulses upon nonlinear propagation. The technique is applied to the characterization of carrier-envelope phase noise in hollow fiber compressors both in the pressure gradient and in the static cell configuration. Measurements performed simultaneously with conventional f-to-2f interferometers before and after compression indicate that the noise emerging in the waveguide adds up arithmetically to the phase noise of the amplifier, thus being strongly correlated to the phase noise of the pulses coupled into the compressor.