Published in

American Institute of Physics, Physics of Fluids, 3(18), p. 036603

DOI: 10.1063/1.2179387

Links

Tools

Export citation

Search in Google Scholar

Cyclone-anticyclone asymmetry of large-scale wakes in the laboratory

Journal article published in 2006 by G. Perret, A. Stegner, Marie Farge ORCID, Thierry Pichon,
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We performed an experimental study of large-scale wakes in a rotating shallow-water layer. Standard particle image velocimetry was used to measure the horizontal velocity field, while a laser-induced fluorescence technique was used to measure the geopotential deviation (i.e., the interface deviation). According to these measurements, we were able to quantify the dynamics in a wide region of parameter space beyond the quasi-geostrophic regime. For obstacles larger than the deformation radius and with small Rossby numbers, a significant asymmetry occurs in the wake between cyclonic and anticyclonic vortices. These parameters correspond to a frontal geostrophic regime with the relative interface deviation being larger than 0.1-0.2. In this case, anticyclones remain coherent and circular, whereas cyclones tend to be elongated and distorted. More surprisingly, for some extreme cases, coherent cyclones do not emerge at all, and only an anticyclonic vortex street appears several diameters behind the obstacle. The transition from a quasi-geostrophic to a frontal geostrophic regime is characterized by a strong increase in the Strouhal number, which can reach a value up to 0.6. Hence, we found that a large-scale wake could differ strongly from the classical Karman street when the relative geopotential deviation becomes larger than the Rossby number. © 2006 American Institute of Physics.