Published in

SAGE Publications, Journal of Thermoplastic Composite Materials

DOI: 10.1177/0892705714563126

Links

Tools

Export citation

Search in Google Scholar

Nonisothermal crystallization of isotactic polypropylene in carbon nanotube networks: The interplay of heterogeneous nucleation and confinement effect

Journal article published in 2014 by Xu Ji, Jing-Bin Chen, Gan-Ji Zhong, Zhong-Ming Li, Jun Lei
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Isotactic polypropylene (iPP) composites with carbon nanotube (CNT) networks at relatively high loadings could have various applications such as electromagnetic interference shielding and thermal conductivity. The crystallization behavior of iPP inside CNT networks could be very much related to the above properties, which was found to be quite different from that of neat iPP in this work. In CNT networks, CNTs not only act as effective heterogeneous nucleating agents to noticeably increase the onset temperature (more than 18°C) of iPP crystallization but also bring strong confinement on the mobility of iPP chains and then reduce the overall crystallization rate of iPP matrix. It is interesting to find that CNT networks, especially in the case of ultrahigh loading (90 wt%), have remarkable confinement effect on crystallization of iPP, overcoming the heterogeneous nucleation of CNTs, resulting in a decline of crystallization rate of iPP. The nonisothermal crystallization kinetics of iPP in the dense CNT network quite fits to the modified Avrami mode by Jeziorny, even more satisfactorily than the case of neat iPP. When confinement effect is dominated during crystallization, we found that the perfection and size of crystallites are extremely decreased at ultrahigh loading, leading to a very low melting point of iPP (approximately 140°C).