Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Year Book of Sports Medicine, (2010), p. 178-179

DOI: 10.1016/s0162-0908(10)79669-0

American Physiological Society, Journal of Applied Physiology, 6(106), p. 1771-1779, 2009

DOI: 10.1152/japplphysiol.91534.2008

Links

Tools

Export citation

Search in Google Scholar

Glucose ingestion during endurance training does not alter adaptation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Glucose ingestion during exercise attenuates activation of metabolic enzymes and expression of important transport proteins. In light of this, we hypothesized that glucose ingestion during training would result in 1) an attenuation of the increase in fatty acid uptake and oxidation during exercise, 2) lower citrate synthase (CS) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity and glycogen content in skeletal muscle, and 3) attenuated endurance performance enhancement in the trained state. To investigate this we studied nine male subjects who performed 10 wk of one-legged knee extensor training. They trained one leg while ingesting a 6% glucose solution (Glc) and ingested a sweetened placebo while training the other leg (Plc). The subjects trained their respective legs 2 h at a time on alternate days 5 days a week. Endurance training increased peak power (Pmax) and time to fatigue at 70% of Pmax ∼14% and ∼30%, respectively. CS and β-HAD activity increased and glycogen content was greater after training, but there were no differences between Glc and Plc. After training the rate of oxidation of palmitate (Rox) and the % of rate of disappearance that was oxidized (%Rdox) changed. %Rdox was on average 16.4% greater during exercise after training whereas, after exercise %Rdox was 30.4% lower. Rox followed the same pattern. However, none of these parameters were different between Glc and Plc. We conclude that glucose ingestion during training does not alter training adaptation related to substrate metabolism, mitochondrial enzyme activity, glycogen content, or performance.