Published in

BioMed Central, BMC Complementary and Alternative Medicine, 1(15), 2015

DOI: 10.1186/s12906-015-0681-9

Links

Tools

Export citation

Search in Google Scholar

A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background 3beta,6beta,16beta-trihydroxylup-20(29)-ene is a lupane triterpene isolated from Combretum leprosum fruit. The lupane group has been extensively used in studies on anticancer effects; however, its possible activity against protozoa parasites is yet poorly known. The high toxicity of the compounds currently used in leishmaniasis chemotherapy stimulates the investigation of new molecules and drug targets for antileishmanial therapy. Methods The activity of 3beta,6beta,16beta-trihydroxylup-20(29)-ene was evaluated against Leishmania (L.) amazonensis by determining the cytotoxicity of the compound on murine peritoneal macrophages, as well as its effects on parasite survival inside host cells. To evaluate the effect of this compound on intracellular amastigotes , cultures of infected macrophages were treated for 24, 48 and 96 h and the percentage of infected macrophages and the number of intracellular parasites was scored using light microscopy. Results Lupane showed significant activity against the intracellular amastigotes of L. (L.) amazonensis . The treatment with 109 μM for 96 h reduced in 80 % the survival index of parasites in BALB/c peritoneal macrophages. At this concentration, the triterpene caused no cytotoxic effects against mouse peritoneal macrophages. Ultrastructural analyses of L. (L.) amazonensis intracellular amastigotes showed that lupane induced some morphological changes in parasites, such as cytosolic vacuolization, lipid body formation and mitochondrial swelling. Bioinformatic analyses through molecular docking suggest that this lupane has high-affinity binding with DNA topoisomerase. Conclusion Taken together, our results have showed that the lupane triterpene from C. leprosum interferes with L. (L.) amazonensis amastigote replication and survival inside vertebrate host cells and bioinformatics analyses strongly indicate that this molecule may be a potential inhibitor of topoisomerase IB. Moreover, this study opens major prospects for the development of novel chemotherapeutic agents with leishmanicidal activity.