Published in

Optica, Journal of the Optical Society of America A, 5(25), p. 1130, 2008

DOI: 10.1364/josaa.25.001130

Links

Tools

Export citation

Search in Google Scholar

Reflection photoelastic tomography for the detection of stress distribution in planar optical waveguides

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel method for measuring local stress distributions and birefringence of films on substrates and planar optical waveguides, with submicrometric resolution, is presented. The technique relies on a reflective tomographic configuration, applied in conjunction with a polarimetric setup, which processes the stress-induced change of the state of polarization of a laser probe beam reflected at the waveguide–substrate (film–substrate) interface. By this means, theoretically foreseen stress behavior can be experimentally verified and spurious or induced local stress variations in integrated optics components can also be brought into evidence. The feasibility of the proposed method has been verified by reconstructing the two-dimensional axial stress distribution in the 4x2 micron(2) core region of a doped silica-on-silicon optical waveguide.