Published in

IOP Publishing, Nanotechnology, 14(26), p. 145701

DOI: 10.1088/0957-4484/26/14/145701

Links

Tools

Export citation

Search in Google Scholar

Super-Hydrophobic Multi-Walled Carbon Nanotube Coatings for Stainless Steel

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature ([Formula: see text]) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values ([Formula: see text]) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.