Published in

BioMed Central, Journal of Molecular Psychiatry, 1(1), p. 7

DOI: 10.1186/2049-9256-1-7

Links

Tools

Export citation

Search in Google Scholar

Circadian and behavioural responses to shift work-like schedules of light/dark in the mouse

Journal article published in 2013 by Niall M. McGowan ORCID, Andrew N. Coogan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Disruption of circadian rhythms is associated with several deleterious health consequences and cognitive impairment. It is estimated that as many as one in five workers are exposed to this risk factor due to experiencing some degree of chronodisruption by way of recurring patterns of shift work. It is not presently clear therefore how efficiently the mammalian circadian system entrains to alternative light/dark cycles such as those found in shift work schedules. Methods The present study examines male CD-1 mice exposed to three different paradigms of rapidly rotating shift work-like light/dark manipulations compared to control animals maintained on a standard 12:12 h light/dark cycle. Results Analysis of circadian patterns of behaviour under such conditions reveals that for fast rotating schedules of light/dark there is minimal circadian entrainment. Further, when placed in constant conditions after a period under the “shift work” lighting conditions there were changes to circadian period associated with the shift work schedules. In contrast to previous studies the shift work-like conditions did not produce changes in animal body-weight. Behavioural testing suggests possible anxiogenic and hyperactive outcomes dependent on rotation speed as animals displayed open field thigmotaxis and hyperlocomotion. Conclusion These results indicate that exposure to alternating patterns of light and dark as experienced by millions of shift workers may produce long-lasting changes in both mammalian circadian and neurobehavioural systems.