Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Journal of Renewable Energy, (2013), p. 1-12, 2013

DOI: 10.1155/2013/939504

Links

Tools

Export citation

Search in Google Scholar

Moisture Sorption Characteristics of Corn Stover and Big Bluestem

Journal article published in 2013 by C. Karunanithy ORCID, K. Muthukumarappan ORCID, A. Donepudi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Moisture content is an important feedstock quality in converting it into energy through biochemical or thermochemical platforms. Knowledge of moisture sorption relationship is useful in drying and storage to preserve the quality of feedstocks. Moisture sorption isotherms for potential feedstocks such as corn stover and big bluestem are missing. EMC values of corn stover and big bluestem were determined using static gravimetric technique with saturated salt solutions (ERH 0.12–0.89) at different temperatures (20, 30, and 40°C). Depending upon the ERH values, EMC values were ranged from 8.0 to 19.6 and 8.8 to 19.2% db for corn stover and big bluestem, respectively, and they followed typical type II isotherm found in food materials. Nonlinear regression was used to fit five commonly used three-parameter isotherm models (i.e., modified Oswin model, modified Halsey model, modified Chung-Pfost model, modified Henderson model, and the modified Guggenheim-Anderson-de Boer (GAB) model) to the experimental data. Modified Halsey emerged as the best model with highF-statistic andR2values with lowEmandEsand fairly random scattered residual plot for corn stover and big bluestem. These models can be used to predict the equilibrium moisture content of these feedstocks starting from harvesting, drying, preprocessing, transportation, storage, and conversion.