Published in

Hindawi, Journal of Probability and Statistics, (2012), p. 1-19, 2012

DOI: 10.1155/2012/524724

Links

Tools

Export citation

Search in Google Scholar

Design and Statistical Analysis of Pooled Next Generation Sequencing for Rare Variants

Journal article published in 2012 by Tao Wang, Chang-Yun Lin, Yuanhao Zhang, Ruofeng Wen, Kenny Ye ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Next generation sequencing (NGS) is a revolutionary technology for biomedical research. One highly cost-efficient application of NGS is to detect disease association based on pooled DNA samples. However, several key issues need to be addressed for pooled NGS. One of them is the high sequencing error rate and its high variability across genomic positions and experiment runs, which, if not well considered in the experimental design and analysis, could lead to either inflated false positive rates or loss in statistical power. Another important issue is how to test association of a group of rare variants. To address the first issue, we proposed a new blocked pooling design in which multiple pools of DNA samples from cases and controls are sequenced together on same NGS functional units. To address the second issue, we proposed a testing procedure that does not require individual genotypes but by taking advantage of multiple DNA pools. Through a simulation study, we demonstrated that our approach provides a good control of the type I error rate, and yields satisfactory power compared to the test-based on individual genotypes. Our results also provide guidelines for designing an efficient pooled.