Published in

Annual Reviews, Annual Review of Genomics and Human Genetics, 1(15), p. 71-92, 2014

DOI: 10.1146/annurev-genom-090413-025621

Links

Tools

Export citation

Search in Google Scholar

No Gene in the Genome Makes Sense Except in the Light of Evolution

Journal article published in 2014 by Wilfried Haerty, Chris P. Ponting ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Evolutionary conservation has been an accurate predictor of functional elements across the first decade of metazoan genomics. More recently, there has been a move to define functional elements instead from biochemical annotations. Evolutionary methods are, however, more comprehensive than biochemical approaches can be and can assess quantitatively, especially for subtle effects, how biologically important—how injurious after mutation—different types of elements are. Evolutionary methods are thus critical for understanding the large fraction (up to 10%) of the human genome that does not encode proteins and yet might convey function. These methods can also capture the ephemeral nature of much noncoding functional sequence, with large numbers of functional elements having been gained and lost rapidly along each mammalian lineage. Here, we review how different strengths of purifying selection have impacted on protein-coding and non-protein-coding loci and on transcription factor binding sites in mammalian and fruit fly genomes.