Published in

Annual Reviews, Annual Review of Ecology, Evolution, and Systematics, 1(45), p. 471-493, 2014

DOI: 10.1146/annurev-ecolsys-120213-091917

Links

Tools

Export citation

Search in Google Scholar

Biodiversity and Ecosystem Functioning

Journal article published in 2014 by David Tilman, Forest Isbell ORCID, Jane M. Cowles
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Species diversity is a major determinant of ecosystem productivity, stability, invasibility, and nutrient dynamics. Hundreds of studies spanning terrestrial, aquatic, and marine ecosystems show that high-diversity mixtures are approximately twice as productive as monocultures of the same species and that this difference increases through time. These impacts of higher diversity have multiple causes, including interspecific complementarity, greater use of limiting resources, decreased herbivory and disease, and nutrient-cycling feedbacks that increase nutrient stores and supply rates over the long term. These experimentally observed effects of diversity are consistent with predictions based on a variety of theories that share a common feature: All have trade-off-based mechanisms that allow long-term coexistence of many different competing species. Diversity loss has an effect as great as, or greater than, the effects of herbivory, fire, drought, nitrogen addition, elevated CO2, and other drivers of environmental change. The preservation, conservation, and restoration of biodiversity should be a high global priority.