Published in

IOP Publishing, Japanese Journal of Applied Physics, 12R(45), p. 9083, 2006

DOI: 10.1143/jjap.45.9083

Links

Tools

Export citation

Search in Google Scholar

Effect of Boric Acid Flux and Drying Control Chemical Additive on the Characteristics of Y 2 O 3 :Eu Phosphor Particles Prepared by Spray Pyrolysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Y2O3:Eu phosphor particles with a spherical shape, a fine size, and high brightness under vacuum ultraviolet (VUV) illumination were prepared by spray pyrolysis. The polymeric precursors were needed to modify the spray solution to prepare spherical particles. The use of only flux with the polymeric precursors did not produce dense and spherical Y2O3:Eu particles; that is, the produced particles were very porous. The addition of both a drying control chemical additive (DCCA) and boric acid to a spray solution containing polymeric precursors was found to produce Y2O3:Eu phosphor particles with a dense structure while maintaining the spherical morphology. According to X-ray diffraction (XRD) analysis, the DCCA induced an enhancement of crystallinity. The use of boric acid flux improved the photoluminescence (PL) intensity under VUV illumination. In addition, the use of both boric acid flux and a DCCA with polymeric precursors further improved the PL intensity owing to the enhancement of the morphology and the crystallinity.