Published in

American Chemical Society, ACS Nano, 12(7), p. 11227-11233, 2013

DOI: 10.1021/nn405016y

Links

Tools

Export citation

Search in Google Scholar

Magnetic Nanosensor for Detection and Profiling of Erythrocyte-Derived Microvesicles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During the course of their lifespan, erythrocytes actively shed phospholipid-bound, microvesicles (MVs). In stored blood, the number of these erythrocyte-derived MVs have been observed to increase over time, suggesting their potential value as a quality metric for blood products. The lack of sensitive, standardized MV assays, however, poses a significant barrier to implementing MV analyses into clinical settings. Here, we report on a new nanotechnology platform capable of rapid and sensitive MV detection in packed red blood cell (pRBC) units. A filter-assisted microfluidic device was designed to enrich MVs directly from pRBC units, and label them with target-specific magnetic nanoparticles. Subsequent detection using a miniaturized nuclear magnetic resonance system enabled accurate MV quantification as well as the detection of key molecular markers (CD44, CD47, CD55). By applying the developed platform, MVs in stored blood units could also be monitored longitudinally. Our results showed that MV counts increase over time, and thus could serve as an effective metric of blood aging. Furthermore, our studies found that MVs have the capacity to generate oxidative stress and consume nitric oxide. By advancing our understanding of MV biology, we expect that the developed platform will lead to improved blood product quality and transfusion safety.