Published in

Springer Nature [academic journals on nature.com], European Journal of Human Genetics, 4(20), p. 411-419, 2011

DOI: 10.1038/ejhg.2011.207

Links

Tools

Export citation

Search in Google Scholar

Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neurofibromatosis type-1 (NF1), caused by heterozygous inactivation of the NF1 tumour suppressor gene, is associated with the development of benign and malignant peripheral nerve sheath tumours (MPNSTs). Although numerous germline NF1 mutations have been identified, relatively few somatic NF1 mutations have been described in neurofibromas. Here we have screened 109 cutaneous neurofibromas, excised from 46 unrelated NF1 patients, for somatic NF1 mutations. NF1 mutation screening (involving loss-of-heterozygosity (LOH) analysis, multiplex ligation-dependent probe amplification and DNA sequencing) identified 77 somatic NF1 point mutations, of which 53 were novel. LOH spanning the NF1 gene region was evident in 25 neurofibromas, but in contrast to previous data from MPNSTs, it was absent at the TP53, CDKN2A and RB1 gene loci. Analysis of DNA/RNA from neurofibroma-derived Schwann cell cultures revealed NF1 mutations in four tumours whose presence had been overlooked in the tumour DNA. Bioinformatics analysis suggested that four of seven novel somatic NF1 missense mutations (p.A330T, p.Q519P, p.A776T, p.S1463F) could be of functional/clinical significance. Functional analysis confirmed this prediction for p.S1463F, located within the GTPase-activating protein-related domain, as this mutation resulted in a 150-fold increase in activated GTP-bound Ras. Comparison of the relative frequencies of the different types of somatic NF1 mutation observed with those of their previously reported germline counterparts revealed significant (P=0.001) differences. Although non-identical somatic mutations involving either the same or adjacent nucleotides were identified in three pairs of tumours from the same patients (P<0.0002), no association was noted between the type of germline and somatic NF1 lesion within the same individual.