Published in

Canadian Science Publishing, Canadian Journal of Physiology and Pharmacology, 2(92), p. 102-108, 2014

DOI: 10.1139/cjpp-2013-0274

Links

Tools

Export citation

Search in Google Scholar

Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted fromPanax notoginsengagainst cerebral ischemia

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Panax notoginseng, a traditional Chinese medicine, has been used for thousands of years to treat ischemic patients. More than 20 saponin components have been isolated from P. notoginseng root and identified chemically. However, these different chemical components have different roles. In this study we compared the neuroprotective mechanisms of ginsenosides Rg1, Rb1, Rg1/Rb1, and panax notoginsenoside (PNS) against injuries caused by cerebral ischemia–reperfusion (I/R). Our results show that all of these treatments significantly reduced infarction volume and alleviated neurological deficits caused by cerebral I/R. The increase in malondialdehyde (MDA) concentration was inhibited by these treatments in the hippocampus. The decreased expressions of thioredoxin-1 (Trx-1), copper–zinc superoxide dismutase (SOD-1), protein kinase B (PKB/Akt), and nuclear factor-kappa B (NF-κB) caused by cerebral I/R were restored by these treatments. The expression of heat shock protein 70 (HSP70) was enhanced in the middle cerebral artery occlusion (MCAO) group, as well as in all of the treatment groups. These results suggest that Rg1 and Rb1 have similar roles in protecting the brain from ischemic damage; however, neither Rg1/Rb1 nor PNS have synergistic effects, thus either Rg1 or the Rb1 monomer should be considered as a pharmacological neuroprotective strategy for use in the case of ischemic stroke.