Published in

Wiley, Advanced Energy Materials, 12(2), p. 1497-1502, 2012

DOI: 10.1002/aenm.201200269

Links

Tools

Export citation

Search in Google Scholar

Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One-dimensional (1D) hierarchical structures composed of Ni3S2 nanosheets grown on carbon nanotube (CNT) backbone (denoted as CNT@Ni3S2) are fabricated by a rational multi-step transformation route. The first step involves coating the CNT backbone with a layer of silica to form CNT@SiO2, which serves as the substrate for the growth of nickel silicate (NiSilicate) nanosheets in the second step to form CNT@SiO2@NiSilicate core-double shell 1D structures. Finally the as-formed CNT@SiO2@NiSilicate 1D structures are converted into CNT-supported Ni3S2 nanosheets via hydrothermal treatment in the presence of Na2S. Simultaneously the intermediate silica layer is eliminated during the hydrothermal treatment, leading to the formation of CNT@Ni3S2 nanostructures. Because of the unique hybrid nano-architecture, the as-prepared 1D hierarchical structure is shown to exhibit excellent performance in both supercapacitors and photocatalytic H2 production.