Acoustical Society of America, The Journal of the Acoustical Society of America, 6(128), p. 3614
DOI: 10.1121/1.3500673
Full text: Unavailable
The contribution of temporal fine structure (TFS) information to co-modulation masking release (CMR) was examined by comparing CMR obtained with unprocessed or vocoded stimuli. Tone thresholds were measured in the presence of a sinusoidally amplitude-modulated on-frequency band (OFB) of noise and zero, two, or four flanking bands (FBs) of noise whose envelopes were either co- or anti-modulated with the OFB envelope. Vocoding replaced the TFS of the tone and masker with unrelated TFS of noise or sinusoidal carriers. Maximum CMR of 11 dB was found as the difference between the co- and anti-modulated conditions for unprocessed stimuli. After vocoding, tone thresholds increased by 7 dB, and CMR was reduced to about 4 dB but remained significant. The magnitude of CMR was similar for both the sine and the noise vocoder. Co-modulation improved detection in the vocoded condition despite the absence of the tone-masker TFS interactions; thus CMR appears to be a robust mechanism based on across-frequency processing. TFS information appears to contribute to across-channel CMR since the magnitude of CMR was significantly reduced after vocoding. Since CMR was evidenced despite vocoding, it is hoped that co-modulation would also improve detection in cochlear-implant listening.